
Kasper Edwards Ph.d. Outline

Page 1 of 15

Ph.d. Outline
This is a working paper and may not be cited without permission. Please mail any
suggestions or comments to ke@its.dtu.dk. References used in other chapters
have been included to provide an overview of literature used.

Kasper Edwards, Lyngby the 3. April 2000

This chapter gives an introduction to the thesis as a whole. The history of computer
operating systems and a brief description of the development of software are
presented along with a description of a computer program. Subsequent, the interesting
aspect of developing software in the GNU/Linux community is presented.

Following the introduction the theoretical motivation is presented. This paragraph
describes the theoretical areas that have inspired this thesis. Later the research
questions are presented.

1.1 Contents
1.1 CONTENTS.. 1
1.1 EMPIRICAL INSPIRATION... 1

1.1.1 What is interesting about the GNU/Linux operting system? .. 3
1.1.2 Is it just GNU/Linux? ... 4
1.1.1 A word on developing software.. 5
1.1.2 Different types of programs ... 6
1.1.3 A word on how software are developed in the GNU/Linux community 7
1.1.4 Keeping track of version numbers.. 8

1.2 THEORETICAL MOTIVATION.. 10
1.2.1 A development model ... 10

1.2 RESEARCH QUESTIONS ... 11
1.2.1 What characterises the GNU/Linux development model?.. 12
1.2.2 What are the economic mechanisms of the development model?................................... 13
1.2.3 What are the implications of using the GNU/Linux development model 13
1.2.4 Does the GNU/Linux development model apply to other than software? 13

1.3 EXPECTATIONS... 13
1.4 BOUNDARIES OF THE REPORT ... 14
1.3 THE STRUCTURE OF THE REPORT .. 14
1.5 REFERENCES .. 14

1.1 Empirical inspiration
Proprietary operating systems have through the history of computing been dominating
the scene of operating systems. There are examples of free operating systems that
have been released to the public, one of the first one was the version 1 of AT&T Unix
from 1971. Later when the licenses from AT&T got more restrictive and expensive
there was a reaction from the Unix user community – the release of 3BSD the 3’rd
release of the Berkeley Software Distribution. This was a free Unix operating system,
later came NetBSD, FreeBSD and OpenBSD all free Unix operating systems. Parallel

mailto:ke@its.dtu.dk

Kasper Edwards Ph.d. Outline

Page 2 of 15

to this development many commercial vendors entered the lucrative market for
operating systems and began developing their own proprietary versions of Unix.
Some of the Unix’es were compatible and others were not. All these Unix’es had one
thing in common, they were made for the very expensive hardware that existed in
those days. This kept Unix in the hands of corporations and universities and kept it
safe from the private user. This also meant that potential private developer did not
have the possibility to contribute. The different Unix’es have always been competing
for users and customers and all the time have the mentioned in-compatibility been
existing. This made it expensive for software developers to create software for all
types of Unix. It is time consuming and costly to maintain a piece of software for all
types of Unix and many vendors chose to market for only a select number of Unix’es.
This might be the reason why Unix in the past never became the most dominating
operating system and lost market to Microsoft’s operating systems. These may have
been technically inferior but there was just one operating system for which to write
applications. The developers and users could just choose the Microsoft operating
systems and gain simplicity in development and a wide selection in applications.

The large majority of Microsoft users were from the beginning users that bought a
computer to solve a specific purpose like word processing, spreadsheet or other needs.
Only a fragment of these users was interested in computer science. These users were
mostly interested in solving a problem and making it easier to work – not developing
the system. The companies that evolved around the PC were part of this new type of
computing not focusing on the user as a source of continued development and thus not
supplying the source code.

It was not until the advent of the Intel 80386 microprocessor for personal computers
in the late 1980’ies that Unix for the PC became interesting. The 80386 had some of
the advanced features needed to run a Unix operating system. The 80386 introduced a
32 bit architecture, memory management and others features that made the PC a
cheap alternative for using Unix.

In 1991 the finish student Linus Torvalds was fed up with the operating system on his
Intel 80386 (a particular type of CPU, central part of a computer) PC-computer.
Wanting a more power full computing environment Linus Torvalds began to create
his own Unix like operating system, which he named Linux. Linux was released to the
public late 1991. Linus Torvalds created Linux using a set of development tools
(compiler, linker, debugger and other) developed by the Free Software Foundation.
These tools were free and were cover by the GNU Public License. The GNU Public
License1 (GPL) allows the user to change and modify the code. Even redistribution is
allowed as long as the changes are made public and derivative work must carry the
GPL license.

The Free Software Foundation was created in early 1980’ies as an effort to create and
distribute free software. Linux is actually only the kernel (the central part of the
operating system). It is hard to imagine the birth of Linux without the development
tools form the Free Software Foundation. It therefor seems reasonable to call the

1 GPL licensed programs grant the user permission to run, copy, distribute and modify the program. It

is not permitted to add restriction and thereby impose propriety rights on the code. Any GPL code
used in a program makes the program GPL. Once a program is GPL’ed it will remain GPL. [Stallman
1999:60].

Kasper Edwards Ph.d. Outline

Page 3 of 15

operating system, the GNU/Linux operating system or just GNU/Linux depending on
context this reflects the origination of the operating system as a whole. GNU is an
recursive acronym for Gnu Not Unix, this is reflecting on the fact that the word Unix
is trademarked by AT&T and can not be used without AT&Ts permission.

1.1.1 What is interesting about the GNU/Linux operting system?
The GNU/Linux operating system in it self is not interesting in relation to this project.
The operating system and the related software becomes interesting when viewed as a
product of a particular development process. The development process becomes
interesting because of the following factors:

• The developers are working for free.

• The resulting product is free.

• The license allows everyone to elaborate and use parts or the whole operating
system in their own project.

These three factors represent a glaring contrast to the commercial way of developing
software that have resulted in the operating systems that are used in most computers
around the word today. Examples of commercial operating systems are the Microsoft
Windows series of operating systems, Novell Netware, IBM operating systems for
their mainframe computers and some of the proprietary Unix operating systems. All
these operating systems have been developed by paid workers earning their living as
programmers. The resulting product from the development has been operating
systems – products – meant to provide the developing company with a profit ensuring
the continued survival. Never has the product been free, although development
versions have sometimes been free. The licenses used have always stated that the user
was not allowed to change of modify the product and that the technology used in the
product were property of the company. This made sure that no one had legal rights to
continue the development of the products. The companies of course never released the
source code for their products without a signed nondisclosure agreement.

Within the last few years the GNU/Linux operating system have been experiencing a
tremendous following with an exponential growth in installed base. On server side the
GNU/Linux operating system is the system of choice among web server the
GNU/Linux operating system are claming a market share in excess of 50%. Linux is
experiencing a growing support from vendor of server and database products being
one of the prime examples are Lotus, Informix and Oracle has released products. IBM
is offering support for GN/Linux for their line of server hardware configured with
GNU/Linux.

The client side lacks the same momentum, though it is the Unix system of choice for
personal use. Still compared to the number of Windows installations in use it holds
but a fragment of the market. The client-side is, however, experiencing a major
growth in software support from commercial vendors. WordPerfect Corporation has
recently released a full Linux distribution intended to be the easy-installation product
the non-tech user this distribution is of course including the famous WordPerfect
word processor. Games are also starting to be released for the GNU/Linux operating
system, this has until now been a non-existing realm of software for the GNU/Linux
community. These are all indications that the GNU/Linux installed base will continue
to grow.

Kasper Edwards Ph.d. Outline

Page 4 of 15

The support from commercial vendors is an indication that corporations believe that
money can be made and that Linux may be viewed as an emerging market. The
corporations contribute to the development of Linux but it must be remembered that
unpaid individuals developed Linux, the GNU tools and much of the software that are
freely available. This still holds true at the time of writing the majority of software are
being developed and maintained by unpaid people. Some programs have been
developed by a single programmer other have been developed by a group of
programmers collaborating.

The continued growth of GNU/Linux relies not on a single software vendor but on the
collaborative effort of the GNU/Linux community. The GPL license applied to
GNU/Linux prevents a single person or company from securing the rights for the
system and gain control of the development. It also ensures that effort made on
existing parts of GNU/Linux will be returned to the community.

The GNU/Linux operating system thus seem to be developed in a special way that
allow all kinds of developers to participate, private a well as corporate, in a process
where every body has some control and no one has complete control. The products of
development are free software that has a potential profit attached in terms of use and
sale. The free (gratis) nature of the software makes it is difficult to understand the
incentives for participating in development of software.

The importance of understanding this way of developing software is emphasised by
the success of the GNU/Linux operating system. People form all parts of the world
have participated in developing a full-featured operating system capable of competing
with major payers in selected areas e.g. web and file/print servers. The interest shown
by commercial companies and private home users contribute to the understanding of
GNU/Linux as a success. The size and growth of companies engaged in GNU/Linux
activities, the growing user base and the longevity of GNU/Linux makes it clear that
GNU/Linux is not a merely a curiosity. GNU/Linux is here to stay and will continue
to develop. The task at hand is to understand the way it is developed.

1.1.2 Is it just GNU/Linux?
So far only the GNU/Linux operating system has been mentioned this is mainly due to
the fact that Linux have been a high profile name in the press and the profile is still
growing. Linux and the notion of a free operating system and free software have
reached the political system with some parties demanding government software to be
based on free software2. The French government has decreed that within three years a
certain amount of software must be based on free software. A factor in these decisions
may be related to a single company supplying a vast majority of the software and that
company resides in a foreign country.

The high profile of GNU/Linux cast a shadow on the large amount of software that
are not produced by neither Linux kernel developers nor the developers related to the
Free Software Foundation. Actually GNU/Linux is but a part of a much larger

2 “Information” 14. February 2000 p. 6.

Kasper Edwards Ph.d. Outline

Page 5 of 15

community developing free software. When analysing3 the number of people
mentioned in the credits file the number reaches 286. One might think that this is a
large number but many others have contributed to the vast number of other software
projects the fact is that there are many projects going on and many people participate
in these projects. A quick scan of projects mentioned at http://www.linux.org lists
more that 120 projects. Some projects have less than 10 active developers others have
more than 250 active developers. The projects have different perspectives some are
information projects that produces different kinds of documentation others are
projects that tries to get Linux running on a different type of computer. Some projects
develop high performance specialities such as multiprocessor computers and
distributed computing. The there are a large group of software projects developing
windowing managers, a flight simulator, 2D mechanical cad systems - in short, all
kinds of software.

GNU/Linux it self gets all the credit but the quick search at linux.org showed that
many many other people are engaged in developing software and others related to the
GNU/Linux operating system. Add to this that linux.org doesn’t even begin to cover
all the projects that are in active development. Many projects are only announced
within a certain User Group as one example SSLUG (Skåne Sjælland Linux User
Group) have currently four projects4 that are only announced on the SSLUG
homepage. From web sites such as freshmeat.org who’s mission is to convey
information on new projects and the status of existing projects it is apparent that there
are a vast amount of software that are developed in a similar manner as the
GNU/Linux operating system. That is: Developed by unpaid programmers, the
resulting product is free and the license allows people elaborate on the programs.

1.1.1 A word on developing software
The results of the collaborative effort of people in the GNU/Linux community are
software, a program that can be used on a computer. Software does not spontaneously
begin to exist but are developed and refined over time by inspired developers.

Programming or coding, the preferred term by hackers is the art of writing a sequence
of instructions that a computer may execute and thus perform the tasks wanted. The
creation of a program may be described as a blend between rigid syntactic perfection
and the creativity of building a castle out of nothing. Each and every command has to
be stated according to correct usage any misspellings or wrong semantics will not be
understood by a compiler. Coding gives the programmer absolute control, anything
can be created, the programmer just has to know what he want then there are infinite
different ways the program may be coded. Of course there are good and bad ways to
implement a program depending on the given situations.

The actual task of writing of a program is done the same way a text document is typed
and edited in a word processor. Instructions are entered, edited and the resulting

3 When using Linux the number can be counted by issuing the following command: ‘grep \^N:

/usr/src/linux/CREDITS | wc –l’. Thanks to Henrik Christian Grove, news.sslug.dk sslug.misc:7206
for pointing this out.

4 The projects are Danish/Swedish spelling, the Danish Howto, cvs2html and Localising (conversion to
Danish and Swedish standards of currency, metrics etc.).

http://www.linux.org/

Kasper Edwards Ph.d. Outline

Page 6 of 15

source code is saved in a file and compiled into a program that can be executed on a
computer. A compiler is a piece of software that translates a source code into
something a computer can understand and execute. There exist different kind of
programming languages that a programmer may use. The languages have different
features that make some languages better suited to solve some problems rather than
others. The development of the GNU/Linux operating system and much of the related
software are done in the language C. The C programming language was a spin-off
from the development of Unix at AT&T in the beginning of the 1970’ies. C is used
because it is standardised5 by IEEE and ISO which means that a program written in C
are likely to run on many operating system and hardware. C is also noted to be an
abstraction just above the hardware layer meaning that the programmer has much
control of the hardware but is still accessing the hardware through a language
abstraction. C is praised to be simple but yet powerful sometimes the word beautiful
even comes up.

1.1.2 Different types of programs
Programs are not just programs some programs are large some are small even others
are very complex. Here, to clarify a bit, programs are divided into different types, in
“The Mythical Man-Month”, Fred Brooks outlines four types of programs that seem
sufficient to ease understanding of programming and different programs:

1. A little program

2. A Programming product (generalisation, testing, documentation)

3. A Programming System, (Interfaces and system integration)

4. A programming systems product, (Combination of 2 and 3)

A little program is an entity in it self, it can be compiled and run on a standard system.
The little program is the creation of the individual, little comments and remarks are
made in the source code. Understandings of the program design are retained in the
mind of the programmer and there is a lack of explicit documentation. Often this
implies that the structure of the program is less clear and that the programmer has no
defined coding strategy. Elaborating on the program by other than the author is
severely hampered hereby. Programming is however stimulated by the apparent
progress as many lines of code are written without wasting time on structure and
documentation. More often than not the little program solves a specific problem and is
not designed with general usage in mind.

The programming product is a program that has been extended in such a way that any
programmer can maintain the program by making changes in the code. The program
is now more structured and commented so that other programmers understand the
design and choice of specific programming technique in different parts of the
program. The usability of the program has been enhanced into something that can be
used to solve several types of problems. The programming product is tested in
different contexts i.e. in conjunction with other programs and under various

5 C was developed to ease the porting of Unix in 1972. Many versions of C have been developed but in

1986 a committee under IEEE was commissioned to define a standard for the C programming
language. The second version of the C standard have been released resent??? Ref og årstal mangler.

Kasper Edwards Ph.d. Outline

Page 7 of 15

configurations. Testing is very time consuming and requires substantial resources.
Still the programming product is a single program that is not dependent on other
programs to perform its function. Along with the commented source code the
programming product is documented. Estimated project time is 3 times that of a little
program with a similar amount of instructions.

A programming system differs from the above by using several different programs to
perform its function. It is a system of programs that interact and work together to
perform its tasks. The programming system appears, to the user, to be a single
program though it is many little programs are performing different tasks. Often the
programming system is the result of several people working together and the different
tasks have been delegated as individual programs. The challenge for the programming
system is requirement for the individual programs to conform to standard for input
and output. For data to pass between individual programs components have to have a
standard describing the interface between components. This has to be done in detail
defining details such as interface, syntax and semantics. Co-ordination between
involved parties is often a problem in the programming system where initiative and
progress may cause incompatibility between the individual programs in the system.
Testing is complicated by the number of programming components in the system and
the amount of errors rise with the combination of programming components.
Estimated project time is 3 times that of a little program with a similar amount of
instructions.

A programming systems product have the all the characteristics of the above. It is
programming product where structured programming has been applied and good
testing and documentation have been conducted. In addition it is a programming
system with many interacting individual programs where elaborate testing have been
conducted. Estimated project time is 9 times that of a little program with a similar
amount of instructions. The estimated time is derived from the combination of a
programming product (3 times) and a programming system (3 times).

1.1.3 A word on how software are developed in the GNU/Linux community
The majority of programming projects that is started in the GNU/Linux community is
initiated by an individual person creating the first version of the program by himself.
Not working with others limits the required infrastructure to a computer with the
GNU/Linux operating system installed which includes all the tools needed for
developing software.

When a program reach a state where it becomes usable to other, the community reacts
by beginning to download and try the program. If the program meets expectations
and/or requirements people begin to participate in the development by submitting
comments, bug-reports, suggestions for improving the program or even patches (a
patch is an update to the code from the program a patch can replace and/or add lines
to the code). This downloading and communicating between interested parties
requires more infrastructures compared to the development of a little program by a
single person. In essences the infrastructure has to support communication between
the parties that participate in the development process. Two types of communication
takes place: 1) Information regarding the project, what direction the project is going,
discussions regarding coding and general discussions. 2) Program and updates, this is
code fragments, patches and new versions.

Kasper Edwards Ph.d. Outline

Page 8 of 15

The non-code communication can be done using one or more of the internet based
forms of communication. Web pages are commonly used for general one-way
communication from the maintainer of the project to all interested parties. A web page
provides the basic information regarding the project and describes how to
communicate with the project. Two-way off-line communications are done using
email, mailing lists, newsgroups and related services. One-line communications
between interested parties are done using services like IRC, chat lines and others. IRC
(Internet Relay Chat) is an internet based chat forum where people can enter a specific
channel to chat online, IRC allows creation of private and group channels. Depending
on the project one or more of these forms of communication may be employed.

Code communication is the distribution of project related code between the interested
parties. The most common form of distribution is ftp-download together with a web
page, many internet sites provide these kinds of services for free examples are
www.freshmeat.com and www.sourceforge.com. Code may also be distributed by
email and mailing lists.

Maintaining a project with a small number of people participating can be done by
hand of the maintainer. When several people contribute to the project the
administrative burden becomes large and the use of automated features becomes
appealing. Projects with automated procedures for updating the program are often
centred around a server running a program like CVS (Concurrent Versioning System)
other programs exist but the core functionality remains the same. CVS is a program
that track changes in program file or a number of files every change receives a
number and is added to the version tree as an independent file. It is possible for the
programmer to download select versions or just recent changes form the server. The
brilliant thing is the ability to separate the versions. A person may request version
x.y.z. and the server will assemble the specific version for download. Thus it is
possible to test things and go back to previous versions when a change breaks the
program.

1.1.4 Keeping track of version numbers
A mantra in the GNU/Linux community is “Release early, release often” meaning that
when changes have been made or features added don’t wait until extensive testing
have been done release to the community without hesitation. Of course many of the
new versions introduces bugs along with new features and improvements. This calls
for a versioning system that, at a glance, can inform of the status of the program.

Releasing a program without extensive testing is called releasing a development
version. A development version that have been tested in the community and received
feedback may later, when bugs have been documented and remedied, be released as a
stable version.

The GNU/Linux community applies a de facto6 version naming scheme. The version
naming scheme uses tree ciphers to convey the information e.g. Linux kernel x.y.z.
The x is the major version number, the y is the sub-version number and the z is a
revision number. Some distributors like Red Hat applies a fourth number e.g. x.y.x-cc

6 A de facto standard is the standard in use that the majority conform to. De facto is opposed to a de

jure (formally approved) standard.

Kasper Edwards Ph.d. Outline

Page 9 of 15

where the cc refers to a distributor specific version number. The version system in the
GNU/Linux community differs from the normal software version numbering with the
addition of the third and sometimes fourth number. There is also a conceptual
difference, the GNU/Linux community use of versions reflects that versions have
great importance in the every day use and that users are treated as developers. A use
can easily submit a bug report and with little effort identify the specific version. This
is as opposed to the versioning system of commercial software like Microsoft Word
or WordPerfect that actually carries two version numbers: An official number like
Word97 and a technical version number like 53360-270-5502054-62850 that is the
reference to the actual code used in this specific version. The official version number
have a much greater PR value that technical like when MS Word changed version
number from 2.0c to 6.0 to be able to compete with WordPerfect version 6.0.

The major version numbers, in the GNU/Linux community, refers to major change in
the program. The change from version 0.y.z to version 1.y.z usually means that a
program have gone from early development to usage stage. Historically the version
0.y.z was internal development versions and version 1.y.x became the first official
public release. Further changes in the x number signals some major change in the
system, an example from the Linux kernel development, when the version shifted to
version 2.y.z, a new file system was introduced and kernels with lower number were
incompatible with the new file system.

The second number, y denotes two things: Equal number indicates that the version is
stable and tested and should be used for production. If the number is unequal it
indicates an experimental version that are still in development. Following
development and testing an unequal version may be promoted to a stable version with
an equal number.

The z number indicates the revision number. Revision numbers rise as new versions
are developed and made public. At one point in time the specific version is locked in
terms of wanted changes and the version is tested until approved and then released as
a stable revision with an equal number.

1.1.2.1 Who decides the numbers
Historically it has been the maintainer of a project that has decided when enough
changes had been made to make it a new version. To a large degree it is a matter of
bounded rationality, when a new version is released as a development version people
starts to use it and bugs and missing features are reported to the maintainer of the
project. The list of bugs and missing features begins to grow and at some point the
maintainer decides to close to list for new items. Now a period of time passes where a
suitable amount of entries from the list gets done and a new release is ready.
Depending on the status of the program the new version may be released as either a
development or a stable version.

The version naming scheme are being used by most of the development projects. The
process of developing and testing varies, however, in the different projects depending
on different factors. The factors include the history of the project i.e. the experience
gathered in the project, available resources, man time, testers, users and others.

Kasper Edwards Ph.d. Outline

Page 10 of 15

1.2 Theoretical motivation
The one motivating theoretical motivating factor is the apparent lack of theory that is
able to explain evolution of the GNU/Linux operating system and related software.
Remembering that software developed in the GNU/Linux community is developed by
unpaid programmers, the resulting product is free (gratis) and the license allows
people elaborate on the programs there are some theoretical problems.

Theory on the economics of innovation has grave difficulties understanding the
development of the GNU/Linux processes. Going back to the early work of Josef
Schumpeter often referred to as Schumpeter Mark I the conceptual problems of
understanding the development of GNU/Linux is noted already in the premise. In
Schumpeter Mark I the central figure is the entrepreneur, a person motivated to start
up a new business, who is driven by the expectation of a temporary super normal
monopoly profit. The entrepreneur expects to be first to market and there by become a
monopolist for a short period of time. But by the status of a monopoly the
entrepreneur will be in a position to charge extra high prices. The entrepreneur
becomes an innovator by introducing new technology to the market.

In Schumpeter Mark I the premise that prompts the entrepreneur to act is the
expectation of a monopoly profit. I one views GNU/Linus as a result of the innovative
effort of entrepreneurs one would have to find the profit incentive that have motivated
the entrepreneur(s). Staying within the Schumpeterian tradition this would mean that
GNU/Linux should be able to generate a monopoly situation and thereby a super
normal profit that would reward the risk taken by the entrepreneur(s). The license of
GNU/Linux and much of the software are, however, explicitly stating that the
software may be distributed and used in other software. This is in effect the exact
opposite of a monopoly where the entrepreneur retains all rights. Thus, the Shumpeter
Mark I theory of innovation already at the premise is unable to understand the
development of the GNU/Linux operating system and software that carries similar
licenses.

Many of the theoretical problems of understanding the development of GNU/Linux
and related software stem from the missing incentives of why the agents act the way
they do.

The one of the premises of the neoclassical economic theory is that agents maximise
their profit this is understood in a monetary sense. In the development of GNU/Linux
agents act, produce and innovate but apparently not to maximise a monetary profit but
for other reasons or incentives.

1.2.1 A development model
It seems appropriate define the way GNU/Linux and related software are developed as
a development model. This emphasises that this is a certain way of developing
software that can be described by certain characteristics.

At this stage he definition of the development model is preliminary and serves as a
guideline. The following proposed definition is a minimal definition that only defines
obvious properties that makes this way of developing software distinct. It is proposed
that a software development project will be defined as adhering to the GNU/Linux
development model if the following are true:

The product of development is software (a computer program).

Kasper Edwards Ph.d. Outline

Page 11 of 15

The software is licensed in such a way that the source code is available,
everyone is permitted to use and develop the software further.

Everyone is allowed to contribute to the development.

1.1.2.2 Aim of the development model
The GNU/Linux development model must describe how software is developed in the
GNU/Linux community. The development model must help the understanding of the
development process and details regarding the development process itself.

In the following distinction between three elements are presented. The distinction is
introduced to ease understanding of the developing process by dividing it into three
separate processes. These processes can then be examined and described separate and
subsequent be analysed as a whole.

The three processes:

1. How software (the specific program) change over time. The technical process.

2. How the method of developing software evolve over time. The organisational
process.

3. What are the incentives for participating. The personal process.

1) Refers to the actual coding process where program code changes. This is where one
or more individuals changes code in the same program within a period of time. As a
result, features are added, bugs are fixed and changes are made to the code - the
program evolves.

2) Refers to the relations between developers that exist in a software development
project. In the beginning of a software project it is usually the maintainer that does
everything in the project, code, document, test, develop new ideas and other. When
the project develops a developer and user base the maintainer begin to receive
feedback. The feedback consists of the odd comments, bug reports, suggestions and
fixes.

3) Refers to that incentives and motivation of the individual programmer.

The above mentioned distinctions may prove to have bearing on each other, the
distinction, however will ease the identification of properties that are should be
ascribed to the development model.

1.2 Research questions
In the previous section it has been identified that the development of the GNU/Linux
operating system have been and still is carried out in an intriguing manner. The way
Linux and the GNU tools are developed along with related projects seems to share
common characteristics. Without further analysis it was proposed that these common
characteristics define a certain way of developing software - a development model.
The development model will carry the following working title: The GNU/Linux
development model. This thesis will answer the following questions:

1. What characterises the GNU/Linux development model?

Kasper Edwards Ph.d. Outline

Page 12 of 15

2. What are the economic mechanisms of the GNU/Linux development mode?
Sub question: How does existing theory of the economics of innovation
apply?

3. What are the implications of using the GNU/Linux development model in a
software development project?

4. Does the GNU/Linux development model apply to other than software?

1.2.1 What characterises the GNU/Linux development model?
Using the framework provided in the above description of the aim of the development
model the following three processes must be analysed and characterised:

• How software (the specific program) changes over time? The technical
process.

• How the method of developing software evolves over time? The
organisational process.

• What are the incentives for participating? The personal process.

It must be emphasised that the GNU/Linux development model centres around the
development of the GNU/Linux operating system and the development of related
software.

This question is motivated by the fact the GNU/Linux development model has been
much applauded in the media. Linux and Open Source have become household terms
that seem to have wide appeal. A definition and precise understanding of what
characterise the GNU/Linux development model have yet to be offered and are much
needed to qualify any further discussion.

The GNU/Linux develop model have been discussed within the community and
papers have even been written describing the merits of this special way of developing
software. These views have been subject of extensive citing in the media when the
development model have been presented and in general when the development model
have been discussed. Alas there have already been formed an implicit understanding
and definition of the model within the community. Subsequently the media and
society have adopted these understandings in general. These views are strongly
embedded in the community, which is demonstrated by the fact that random people
provide the same answers for question using the same arguments.

Maybe the answers they provide are not correct but the result of a widespread belief.

The question must thus be answered in two stages. The first will characterise the
development model using sources provided by the community. This will document
the self-understanding of the community. The self-understanding will be verified in
the community.

The second stage will be an analysis of the self-understanding where the different
element will be identified. This stage will result in a precise definition of the
GNU/Linux development model.

Kasper Edwards Ph.d. Outline

Page 13 of 15

1.2.2 What are the economic mechanisms of the development model?
This is a comparative study of the economic mechanisms in the GLDM and the
mechanisms of a normal economy.

There are a number of transactions taking place what is their nature and what is their
economic content. It must be possible to gain an economic understanding by
contrasting the “free” transactions with the commercial transactions of the normal
world.

1.2.2.1 How does existing theory of the economics of innovation apply?
It seems that the nature of the innovation in the GNU/Linux development model is
different from the areas usually associated with the economics of innovation. This
question will address this issue.

As presented in the paragraph 1.2 Theoretical motivation the standard body of theory
on the economics of innovation seem to have problems when analysing that
GNU/Linux development model. This question will be answered by a brief discussion
on the usability of conventional theory to understand the development model.

1.2.3 What are the implications of using the GNU/Linux development model
Doing things in a special way often provide results of a certain type, using a hammer
might be good for nails but less successful when tightening nut and bolts. The same
thing applies to development models where one type of development model is
successful in producing software with certain characteristics.

The aim is to characterise the types of development the works well with the
GNU/Linux development model

It must be analysed whether software resulting from the GNU/Linux development
model share common characteristics that can be attributed to the development
process.

This question will be answered using hypothetical deductive methodology to form
questions that will verify the proposed hypothesis. Selected theory must be applied to
deduct hypothesises.

1.2.4 Does the GNU/Linux development model apply to other than software?
This is a thought question in the sense that the question will not be exposed to a large
empirical study. The questions will be answered by a theoretical analysis and
discussion weather it is possible to imagine a physical good being developed and
distributed the same way as software in the development model.

1.3 Expectations
En form for formulering af theser eller forventninger til hvad der skal komme ud af
dete studie. En form for froventede resultater.

Jeg regner med at Raymond er fuld af l…

Det er ikke et demokrati men en mængde små paver.

Kasper Edwards Ph.d. Outline

Page 14 of 15

1.4 Boundaries of the report
What not to examine, draws a line in the sand.

This thesis has no interest in the technical aspects of programming.

1.3 The structure of the report
A description of the structure of the report and how the reader should understand the
different chapters.

1.5 References
Cargile, Carl F. (1989),
“Information Technology Standardization: Theory, Process, and Organizations”,
Digital Press, Bedford, MA.

Corbató, F.J. & Vyssotsky, V.A. (1965),
“Introdustion and Overview of the Multics System”, 1965 Fall Joint Computer
Confrence.

Honderich, Ted (ed.) “The Oxford Companion to Philosophy”, 1995, Oxford
University Press.

Mahoney, Michael S. (1998),
“The UNIX oral history projekt”, AT&T Bell Laboratories.

McKusic, Marshall K. (1999),
 “Twenty Years of Berkeley Unix - From AT&T Owned til Freely Redistributable” in
"Open Sources - Voices from the Open Source Revolution", Ed's Chris Dibona, Sam
Ockman and Mark Stone, O'Reilly & Associates 1999.

Lewis, Pierre P. (1994),“A very brief look at Unix history”,
http://www2.shore.net/~jblaine/vault/plh.html.

Leonard, Andrew (1998)
“The Richard Stallman Saga, Redux”, Salon Magazine, Sept. 11, 1998
http://www.salonmagazine.com/21st/feature/1998/09/11feature.html

Munkholm, Hanne; Troelsen, Caper; Jensen, Eva D. (1997)

“The Linux Way”, rapport made for the Operating Systems course at the Copenhagen
Engeneering School (Københavns Teknikum).

Kasper Edwards Ph.d. Outline

Page 15 of 15

OpenSource.Org (1999),
”History of the Open Source effort”, http://www.opensource.dk/mirror/history.html.

Perens, Bruce (1999)
“The Open Source Definition” in "Open Sources - Voices from the Open Source
Revolution", Ed's Chris Dibona, Sam Ockman and Mark Stone, O'Reilly & Associates
1999.

Ritchie, Dennis M. (1984),
“The Evolution of the Unix Time-sharing system”, AT&T Bell Laboratories
Technical Journal 63 no.6 part 2, October, pp. 1577-93

Ritchie, Dennis M, (1996),
“The Development of the C Language”, Bell Labs / Lucent Technologies.

Salus, Peter H. (1994),
“A Quarter Century of UNIX”, Addison-Wesley Publishing, Inc.

Simonsen, Keld Jørn (1999),
Presentation at the Skåne Sjælland Linux User Group, 12/10-99, www.sslug.dk.

Stallman, Richard (1999),
“The GNU Operating System and the Free Software Movement” in "Open Sources -
Voices from the Open Source Revolution", Ed's Chris Dibona, Sam Ockman and
Mark Stone, O'Reilly & Associates 1999.

Valloppilli, Vinod
“The Halloween document” an internal Microsoft memorandum leaked to Eric S.
Raymond who subsequently published an annotated version at
http://www.opensource.org/halloween/halloween1.html.

Quarterman, John S. & Wilhelm, Sussane (1993),
“Unix, POSIX and open systems - The open Standards Puzzle”, Addison -Wesley
Publishing Company, Inc. 1993

	Contents
	Empirical inspiration
	What is interesting about the GNU/Linux operting system?
	Is it just GNU/Linux?
	A word on developing software
	Different types of programs
	A word on how software are developed in the GNU/Linux community
	Keeping track of version numbers
	Who decides the numbers
	Theoretical motivation

	A development model
	Aim of the development model
	Research questions

	What characterises the GNU/Linux development model?
	What are the economic mechanisms of the development model?
	How does existing theory of the economics of innovation apply?
	What are the implications of using the GNU/Linux development model
	Does the GNU/Linux development model apply to other than software?
	Expectations
	Boundaries of the report
	The structure of the report
	References

